The DFRC Method for Lignin Analysis. 7. Behavior of Cinnamyl End Groups

Fachuang Lu and J ohn Ralph*
U.S. Dairy Forage Research Center, Agricultural Research Service, U.S. Department of Agriculture, and Department of Forestry, University of Wisconsin-Madison, Madison, Wisconsin 53706

The behavior of cinnamyl end groups of lignins during the derivatization followed by reductive cleavage (DFRC) procedure has been investigated using lignin model compounds. On AcBr treatment, hydroxycinnamyl alcohols give rise mainly to 1-aryl-1,3-dibromopropanes from which 1-aryl-3bromopropanes and arylcyclopropanes are formed by zinc reduction. Arylpropene derivatives are also significant among DFRC products of etherified cinnamyl end-group models. Major monomers from DFRC of hydroxycinnamaldehydes are arylcyclopropyl acetates produced by reductive ring closure of 1-acetoxy-3-aryl-1,3-dibromopropanes. Although the reactions are not as clean as the ethercleaving reactions that form the basis of the DF RC method, end groups produce diagnostic compounds that provide valuable markers for studying end groups in lignins.

Keywords: Acetyl bromide; lignin model compound; end groups; β-bromoether; reductive elimination; DFRC; hydroxycinnamyl alcohol; hydroxycinnamaldehyde; aryl cyclopropane

INTRODUCTION

Lignins are complex natural polymers arising from an enzyme-mediated dehydrogenative polymerization of phenylpropanoid precursors, primarily coniferyl and sinapyl alcohols (Harkin, 1967; F reudenberg and Neish, 1968; Adler, 1977; Chen, 1991). Softwood guaiacyl lignins are derived primarily from coniferyl alcohol, whereas hardwood guaiacyl - syringyl lignins come from a mixture of coniferyl and sinapyl alcohols. Lignification involves free-radical coupling reactions, sometimes combined with nucleophilic additions to quinone methide intermediates, to form threedimensional polymers. Sarkanen (1971) reviewed the two types of polymerization processes for synthetic lignin (DHP) formation in vitro originated by Bernd Lehman and John M. Harkin (Harkin, personal communication). The Zutropf DHPs, formed by adding lignin precursors slowly and continuously, were called "endwise" polymers and structurally resembled isolated wood lignins more closely than Zulauf DHPs or "bulk" polymers, formed by adding the precursors in a single batch.

One characteristic difference between endwise and bulk synthetic lignin polymers is that there are fewer cinnamyl end groups in the former than in the latter, because bulk lignification involves substantial immediate dimerization. Endwise polymerization more frequently involves addition of a monomer to a growing lignin oligomer. Because the number of cinnamyl end groups in lignin is relatively low, lignification in the plant cell wall is believed to be an endwise polymerization, although there is considerable evidence for cytochemical heterogeneity in lignins (Grushnikov and Shorygina, 1970; Terashima et al., 1979, 1986a,b; Lapierre and Monties, 1981, 1991; Monties and Lapierre,

[^0]1981; Lapierre et al., 1982, 1983, 1991; M onties, 1985; Tollier et al., 1986; Terashima and Fukushima, 1988; Terashima and Seguchi, 1988; He and Terashima, 1990, 1991; Fukushima and Terashima, 1991; Kim et al., 1994; Ede et al., 1996). Recently we found that a milled tobacco lignin, like DHPs, has a high content of cinnamyl end groups, $\beta-5$ and $\beta-\beta$ linkages (Ralph et al., 1998). The content of end groups in lignins is therefore an important characteristic of lignin structure. It would be hel pful to be able to quantify lignins' end groups for a better understanding of lignin biosynthesis.
The DFRC (derivatization followed by reductive cleavage) method is a recently developed analytical tool for lignin characterization (Lu and Ralph, 1997a,b, 1998a-c; Peng et al., 1998, 1999; Ralph and Lu, 1998). Through DFRC, β-aryl ether linkages in lignin are cleaved, releasing monomers that are quantified by GC. Most monomeric and dimeric DFRC products have been identified. A previous study (Lu and Ralph, 1998a) showed that monomers released from end groups were diagnostic, but a mechanism to account for their formation was not clear. In this study several lignin models with cinnamyl end groups were subjected to DFRC degradation and major monomers isolated and identified. Mechanisms leading to the formation of these diagnostic monomers are addressed.

EXPERIMENTAL PROCEDURES

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlation NMR (gradient HMQC and HMBC) spectra were taken on a Bruker DRX-360 instrument fitted with a $5-\mathrm{mm}$ probe with inverse geometry (proton coils nearest the sample) and three-axis gradients. The conditions used for all samples were $2-60 \mathrm{mg}$ of material in 0.4 mL of acetone- d_{6}, with the central solvent peak as internal reference ($\delta_{H} 2.04, \delta_{C} 29.80$). The carbon/proton designations are based on the conventional lignin numbering system (Figures 3 and 6).

GC and GC/MS conditions were as described previously (Lu and Ralph, 1998a). Mass spectra for brominated products are reported by specifying the bromine-derived multiplets followed
by their relative intensities, e.g. 322/324/326 (4/8/4)-the triplet signifying an ion with two bromines.

The DFRC Procedure. For GC/MS analysis, 5-10 mg of substrates was used for DFRC. For preparative scale DFRC, $100-150 \mathrm{mg}$ of starting materials was used.

AcBr treatment conditions used were those previously described (Lu and Ralph, 1997b).

AcBr treatment products were separated on normal-phase preparative ($2-\mathrm{mm}$ thickness) TLC plates (Alltech, Deerfield, IL) using $\mathrm{CHCl}_{3} / E t O A c$ (20:1) as solvent. The major DFRC final products 11, 14, and $\mathbf{2 3}$ were isolated from C_{18} reversephase 1-mm TLC plates (Alltech) using $\mathrm{MeOH} /$ water, 6:4, following normal-phase TLC ($\mathrm{CHCl}_{3} / \mathrm{EtOAc}, 20: 1$) from preparative DFRC of 4-hydroxycinnamyl alcohols 1 and 4-hydroxycinnamaldehydes 15.

Product Characterization. Structures for compounds in this section are in Figures 2 and 3. Mass spectra for the final monomeric products were reported in part 2 of this series (Lu and Ralph, 1998a).

3-Acetoxy-1-(4-acetoxy-3-methoxyphenyl)-1-bromopropane (3a): $\delta_{\mathrm{H}} 1.97$ (γ-OAc), 2.23 ($\mathrm{A}-\mathrm{OAc}$), $2.56(2 \mathrm{H}, \mathrm{m}, \beta), 3.85(\mathrm{OMe})$, $4.14(1 \mathrm{H}, \mathrm{m}, \gamma), 5.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.7,6.4 \mathrm{~Hz}, \alpha), 7.04(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~A} 5), 7.08(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,2.0 \mathrm{~Hz}, \mathrm{~A} 6), 7.25(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{~A} 2)$; $\delta_{\mathrm{c}} 20.4(\gamma-\mathrm{OAc}), 20.7$ (A-OAc), $39.3(\beta), 52.3$ (β), 56.3 (OMe), $62.8(\alpha), 112.7$ (A2), 120.4 (A6), 123.8 (A5), 141.0 (A4), 141.4 (A1), 152.4 (A3), 168.9 (A-OAc), 170.8 (γ-OAc); MS 344/346 (M+ 2/2), 302/304 (3/3), 243/245 (1/1), 223 (5), 205 (15), 163 (92), 150 (25), 131 (100).

1-(4-Acetoxy-3-methoxyphenyl)-1,3-di bromopropane (4a): δ_{H} 2.23 (OAc), $2.62(1 \mathrm{H}, \mathrm{m}, \beta 1), 2.83(1 \mathrm{H}, \mathrm{m}, \beta 2), 3.57(2 \mathrm{H}, \mathrm{m}$, $\gamma^{\prime} \mathrm{s}$), 3.85 (OMe), 5.31 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0,5.8 \mathrm{~Hz}, \alpha$), $7.05(1 \mathrm{H}, \mathrm{d}$, $\mathrm{j}=8.1 \mathrm{~Hz}, \mathrm{~A} 5), 7.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1,2.0 \mathrm{~Hz}, \mathrm{~A} 6), 7.26(1 \mathrm{H}$, d, J = 2.0 Hz, A2); $\delta_{c} 20.4$ (OAc), $31.9(\gamma), 42.7(\beta), 53.7(\alpha)$, 56.4 (OMe), 112.7 (A2), 120.4 (A6), 123.9 (A5), 140.7 (A1), 141.1 (A4), 152.4 (A3), 168.9 (A-OAC).

1-(4-Acetoxy-3,5-dimethoxyphenyl)-1,3-dibromopropane(4b): $\delta_{\text {H }} 2.23(\mathrm{OAC}), 2.62(1 \mathrm{H}, \mathrm{m}, \beta 1), 2.83(1 \mathrm{H}, \mathrm{m}, \beta 2), 3.57(2 \mathrm{H}, \mathrm{m}$, $\left.\gamma^{\prime} \mathrm{s}\right), 3.83(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$'s), $5.28(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0 .5 .8, \alpha), 6.90$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{A} 2 / 6$); $\delta \mathrm{c} 20.2$ (OAc), $31.9(\gamma), 42.6$ (β), $54.2(\alpha), 56.6$ (OMe's), 105.1 (A2/6), 129.8 (A4), 140.1 (A1), 153.2 (A3/5), 168.4 (A-OAC); MS 364/366/368 (M+, 1/2/1), 322/324/326 (4/8/4), 243/ 245 (100/98), 164 (24), 150 (12), 149 (11), 137 (35), 129 (33), 103 (19), 91 (20), 77 (17).

4-Acetoxy-3-methoxycinnamyl bromide (5a): $\delta_{\text {H }} 2.23$ (OAc), $3.83(\mathrm{OMe}), 4.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,0.9 \mathrm{~Hz}, \gamma), 6.49(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=$ $15.5,7.8 \mathrm{~Hz}, \beta$), $6.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.5 \mathrm{~Hz}, \alpha), 7.01(1 \mathrm{H}, \mathrm{m}, \mathrm{A} 5)$, 7.01 (1 H , m, A6), 7.20 (1H, s, A2); $\delta_{c} 20.4$ (OAc), 34.3 (g), 56.2 (OMe), 111.2 (A2), 120.1 (A6), 123.7 (A5), 126.5 (β), 134.5 (α), 135.7 (A1), 140.9 (A4), 152.3 (A3), 168.8 (OAc); MS 284/286 ($\mathrm{M}^{+}, 3 / 3$), 242/244 (5/5), 163 (70), 131 (100), 103 (33).

4-Acetoxy-3,5-dimethoxycinnamyl bromide (5b): $\delta_{\mathrm{H}} 2.23$ (OAc), 3.82 (OMe), 4.25 (2 H , dd, J $=7.6 .0 .8 \mathrm{~Hz}, \gamma), 6.53(1 \mathrm{H}$, $\mathrm{dt}, \mathrm{J}=15.5,7.8 \mathrm{~Hz}, \beta), 6.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.5 \mathrm{~Hz}, \alpha), 6.84(2 \mathrm{H}$, s, A2/6); $\delta \mathrm{c} 20.2$ (OAc), $34.3(\gamma), 56.4$ (OMe), 104.3 (A2/6), 126.7 (β), 129.9 (A4), 135.0 (α), 135.1 (A1), 153.3 (A3), 168.4 (OAc).

1-Acetoxy-1-(4-acetoxy-3-methoxyphenyl)-2,3-dibromopropane(6a): $\delta_{H} 2.12$ (α-OAc), 2.23 (A-OAc), 3.80 ($1 \mathrm{H}, \mathrm{m}, \gamma 1$), 3.85 (OMe), $3.92(1 \mathrm{H}, \mathrm{m}, \gamma 2), 4.80(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.1,5.9 \mathrm{~Hz}, \beta), 6.10$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \alpha$), 7.08 ($1 \mathrm{H}, \mathrm{m}, \mathrm{A} 5$), 7.08 ($1 \mathrm{H}, \mathrm{m}, \mathrm{A} 6$), 7.25 ($1 \mathrm{H}, \mathrm{s}, \mathrm{A} 2$); $\delta_{c} 20.5$ ($\alpha-\mathrm{OAc}$), 20.8 (A-OAc), $34.7(\gamma), 55.2(\beta)$, 56.3 (OMe), 75.8 (α), 112.8 (A2), 120.7 (A6), 123.5 (A5), 136.0 (A1), 141.2 (A4), 152.2 (A3), 168.8 (A-OAC), 169.6 (α-OAC); MS 422/424/426 (${ }^{+}$, 2/4/2), 380/382/384 (6/12/6), 221 (20), 195 (11), 179 (32), 153 (100), 131 (12).

1-(4-Acetoxy-3-methoxyphenyl)-1,2,3-tri bromopropane (7a): not isolated; structure from GC/MS only; MS 400/402/404/406 ($\left.\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}, 4 / 6 / 6 / 3\right), 321 / 323 / 325$ (36/70/37), 242/244 (6/ 6), 241/243 (4/4), 163 (100), 131 (100), 103 (38).

1-(4-Acetoxy-3-methoxyphenyl)-3-bromopropane (11a): δ_{H} $2.16(2 \mathrm{H}, \mathrm{m}, \mathrm{bs}), 2.75\left(2 \mathrm{H}, \mathrm{m}, \alpha^{\prime} \mathrm{s}\right), 3.49(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}$, $\gamma^{\prime} \mathrm{s}$), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,1.8 \mathrm{~Hz}, \mathrm{~A} 6), 6.95$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~A} 5$), $6.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.80 \mathrm{~Hz}, \mathrm{~A} 2)$; $\delta \mathrm{c} 34.0$ $(\gamma), 34.5(\alpha), 35.1$ (β), 56.1 (OMe), 113.6 (A2), 121.1 (A6), 123.4 (A5), 139.2 (A4), 140.5 (A1), 152.1 (A3), 169.1 (A-OAc).

1-(4-Acetoxy-3,5-dimethoxyphenyl)-3-bromopropane(11b): δ_{H} $2.16(2 \mathrm{H}, \mathrm{m}, \mathrm{bs}), 2.74\left(2 \mathrm{H}, \mathrm{m}, \alpha^{\prime} \mathrm{s}\right), 3.50(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}$, $\left.\gamma^{\prime} \mathrm{s}\right)$, 3.80 ($6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $6.80(2 \mathrm{H}, \mathrm{s}, \mathrm{A} 2 / 6)$; $\delta_{\mathrm{c}} 34.1(\gamma), 35.1(\beta)$, 35.2 (α), 56.4 (OMe's), 106.0 (A2/6), 128.1 (A4), 140.1 (A1), 153.1 (A3/5), 168.6 (A-OAc).

4-Acetoxy-3-methoxyphenyl cycl opropane (14a): $\delta_{H} 0.68$ (2H, $\mathrm{m}, \beta / \gamma), 0.94(2 \mathrm{H}, \mathrm{m}, \beta / \gamma), 1.90$ ($1 \mathrm{H}, \mathrm{m}, \alpha$), 2.19 ($3 \mathrm{H}, \mathrm{s}, \mathrm{A}-\mathrm{OAc}$), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 6.66 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,1.8 \mathrm{~Hz}, \mathrm{~A} 6$), 6.801 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.80 \mathrm{~Hz}, \mathrm{~A} 2$), $6.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~A} 5)$; $\delta_{\mathrm{C}} 9.5$ $(\beta / \gamma), 15.9$ (α), 20.5 (A-OAc), 56.0 (OMe), 110.9 (A2), 118.0 (A6), 123.2 (A5), 138.7 (A4), 143.7 (A1), 152.1 (A3), 169.0 (A-OAc).

4-Acetoxy-3,5-dimethoxyphenyl cycl opropane (14b): $\delta_{\mathrm{H}} 0.70$ ($2 \mathrm{H}, \mathrm{m}, \beta / \gamma$) , $0.93(2 \mathrm{H}, \mathrm{m}, \beta / \gamma), 1.89(1 \mathrm{H}, \mathrm{m}, \alpha), 2.19(3 \mathrm{H}, \mathrm{s}$, A-OAc), 3.76 (6H, s, OMe's), 6.4 (2H, s, A2/6); $\delta_{C} 9.5(\beta / \gamma), 16.5$ (α), 20.3 (A-OAc), 56.4 (OM e's), 103.1 (A2/6), 127.7 (A4), 143.6 (A1), 153.0 (A3/5), 168.6 (A-OAc).

1-(4-Acetoxy-3-methoxyphenyl)-1-bromo-3,3-diacetoxypropane (17a): $\delta_{\mathrm{H}} 1.99$ (3H, s, γ-OAc), 2.00 (3H, $\left.\mathrm{s}, \gamma-\mathrm{OAc}\right), 2.22$ (3H, s, A-OAc), 2.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{bs}$), 3.82 (3H, s, OMe), 5.27 (1H, dd, J $=8.2,7.0 \mathrm{~Hz}, \alpha), 6.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.6,4.7 \mathrm{~Hz}, \gamma), 7.04$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1,2.0 \mathrm{~Hz}, \mathrm{~A} 5$), 7.09 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1,2.0 \mathrm{~Hz}, \mathrm{~A} 6$), $7.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{~A} 2) ; \delta_{\mathrm{c}} 20.4$ (A-OAc), $20.5(\gamma-\mathrm{OAc})$, 20.6 (γ-OAc), 43.4 (β), 49.08 (α), 56.4 (OMe), $89.5(\gamma), 112.6$ (A2), 120.4 (A6), 123.8 (A5), 140.9 (A1), 141.1 (A4), 152.4 (A3), 168.9 (A-OAc), 169.0 (γ-OAc), 169.2 (γ-OAC).

1-(4-Acetoxy-3,5-dimethoxyphenyl)-1-bromo-3,3-di acetoxypropane (17b): $\delta_{H} 2.04\left(3 \mathrm{H}, \mathrm{s}, \gamma-\mathrm{OAC}_{1}\right), 2.05\left(3 \mathrm{H}, \mathrm{s}, \gamma-\mathrm{OAC}_{2}\right), 2.26$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{A}-\mathrm{OAc}$), $2.80\left(2 \mathrm{H}, \mathrm{m}, \beta^{\prime} \mathrm{s}\right.$), 3.86 ($6 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \mathrm{e}^{\prime} \mathrm{s}$), 5.28 (1 H , $\mathrm{dd}, \mathrm{J}=8.2,6.8 \mathrm{~Hz}, \alpha), 6.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.6,4.7 \mathrm{~Hz}, \gamma), 6.94$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{A} 2 / 6$); $\delta_{\mathrm{c}} 20.2$ (A-OAc), 20.6 (γ-OAc's), $43.4(\beta), 49.6$ (α), 56.7 ($\mathrm{OM} \mathrm{e}^{\prime} \mathrm{s}$), 89.6 (γ), 105.2 (A2/6), 129.8 (A4), 140.3 (A1), 153.3 (A3/5), 168.4 (A-OAC), 169.0 (γ-OAc), 169.2 (γ-OAC).

1-Acetoxy-3-(4-a cetoxy-3-methoxyphenyl)-1,3-di bromopropane (18a) (two isomers): $\delta_{H} 2.05 / 2.11$ (3H, s, γ-OA c's), $2.23 /$ 2.23 ($6 \mathrm{H}, \mathrm{A}-\mathrm{OAc}$), 3.01/3.14 ($2 \mathrm{H}, \mathrm{m}, \beta^{\prime} \mathrm{s}$), 3.84/3.85 (OMe's), $5.28 / 5.30(1 \mathrm{H}, \mathrm{m}, \alpha), 6.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.6,6.0 \mathrm{~Hz}, \gamma), 6.75$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5,4.1 \mathrm{~Hz}, \gamma^{\prime} \mathrm{s}$), $7.11 / 7.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2,2.0$ Hz, A6's), $7.05 / 7.06$ ($1 \mathrm{H}, \mathrm{d}$'s, J $=8.0 \mathrm{~Hz}, ~ A 5$'s), $7.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=2.0 \mathrm{~Hz}$, A2's); δ_{c} 20.4/20.4 (A-OAc), 20.6/20.7 (γ-OAc), 48.5/ $49.1(\beta), 50.5 / 50.9(\alpha), 56.4 / 56.4$ (OMe), 74.0/75.5 (γ), 112.7/ 112.8 (A2), 120.5/120.5 (A6), 123.9/124.0 (A5), 139.9/140.2 (A1), 141.2/141.2 (A4), 152.4/152.5 (A3), 168.5/168.9 (γ-OAC), 168.8/ 168.9 (A-OAc).

1-Acetoxy-3-(4-acetoxy-3,5-dimethoxyphenyl)-1,3-dibromopropane (18b) (two isomers): $\delta_{H} 2.06 / 2.12$ (3H, s, γ-OAC's), $2.22 /$ 2.22 ($6 \mathrm{H}, \mathrm{s}, \mathrm{A}-\mathrm{OAc}$'s), 3.15/3.16 ($2 \mathrm{H}, \mathrm{m}, \mathrm{bs}$), 3.82/3.82 ($6 \mathrm{H}, \mathrm{s}$, OMe's), 5.27/5.29 (1H, m, α), $6.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.1,6.0 \mathrm{~Hz}, \gamma)$, 6.76 (1H, dd, J $\left.=8.74,4.0 \mathrm{~Hz}, \gamma^{\prime} \mathrm{s}\right), 6.93 / 6.94(2 \mathrm{H}, \mathrm{s}, \mathrm{A} 2 / 6)$; $\delta \mathrm{c}$ 20.2/20.2 (A-OAC), 20.6/20.7 (γ-OAC), 49.0/48.5 (β), 51.4/51.0 (α), 56.6/56.6 (OMe's), 73.9/75.5 (γ), 105.2/105.2 (A2/6), 129.9/ 129.9 (A4), 139.6/139.3 (A1), 153.2/153.3 (A3/5), 168.2/168.2 (γ-OAC), 168.3/168.5 (A-OAc).

4-Acetoxy-3-methoxy-9-bromocinnamyl acetate(19a): $\delta_{\mathrm{H}} 2.07$ ($3 \mathrm{H}, \mathrm{s}, \gamma-\mathrm{OAc}$), 2.23 (3H, A-OAc), 3.82 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 6.33 (1 H , dd, $\mathrm{J}=16.1,6.1 \mathrm{~Hz}, \beta), 6.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.1 \mathrm{~Hz}, \alpha), 7.04(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{~A} 5), 7.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2,2.1 \mathrm{~Hz}, \mathrm{~A} 6), 7.25$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.1,1.0 \mathrm{~Hz}, \gamma), 7.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.1 \mathrm{~Hz}, \mathrm{~A} 2) ; \delta_{\mathrm{c}}$ 20.4 (A-OAc), 20.7 (γ-OAc), 56.3 (OMe), 90.17 (γ), 111.6 (A2), 120.6 (A6), 123.4 (β), 123.9 (A5), 135.2 (A1), 135.2 (α), 141.5 (A4), 152.6 (A3), 168.8 (A-OAC), 169.1 (γ-OAc).

1-(4-Acetoxy-3-methoxyphenyl)-1,3,3-tribromopropane (21a): $\delta_{\mathrm{H}} 2.23$ (OAc), 3.17 ($1 \mathrm{H}, \mathrm{m}, \beta 1$), $3.40(1 \mathrm{H}, \mathrm{m}, \beta 2)$, 3.80 (OMe), $5.26(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.9,5.5 \mathrm{~Hz}, \alpha), 5.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2,5.5 \mathrm{~Hz}$, $\gamma), 7.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{~A} 5), 7.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2,2.0 \mathrm{~Hz}$, A6), 7.35 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{~A} 2$); $\delta_{\mathrm{C}} 20.4$ (OAc), $43.7(\gamma), 52.6$ (β), 54.0 (α), 56.4 (OMe), 113.0 (A2), 120.7 (A6), 124.0 (A5), 139.5 (A1), 141.4 (A4), 152.6 (A3), 168.8 (OAc).

1-(4-Acetoxy-3,5-dimethoxyphenyl)-1,3,3-tribromopropane (21b): $\delta_{\mathrm{H}} 2.22$ (OAc), 3.17 (1H, m, $\beta 1$), 3.42 ($1 \mathrm{H}, \mathrm{m}, \beta 2$), 3.84 ($6 \mathrm{H}, \mathrm{s}, \mathrm{OMe's}$), 5.24 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.1,5.4 \mathrm{~Hz}, \alpha$), 5.90 ($1 \mathrm{H}, \mathrm{dd}$, J = 8.3, $5.4 \mathrm{~Hz}, \gamma), 6.98$ (2H , s, A-2/6); $\delta \mathrm{c} 20.2$ (OAc), $43.8(\gamma)$, 53.2 (β), 53.9 (α), 56.7 (OMe's), 105.5 (A2/6), 130.2 (A4), 138.9 (A1), 153.4 (A3/5), 168.4 (OAc).
cis-1-Acetoxy-2-(4-acetoxy-3-methoxyphenyl)cyd opropane (cis23a): $\delta_{\mathrm{H}} 1.23$ ($1 \mathrm{H}, \mathrm{m}, \beta 1$), 1.30 ($1 \mathrm{H}, \mathrm{m}, \beta 2$), 1.78 ($3 \mathrm{H}, \mathrm{s}, \gamma-\mathrm{OAc}$),
2.20 ($3 \mathrm{H}, \mathrm{s}, \mathrm{A}-\mathrm{OAc}$), 2.26 ($1 \mathrm{H}, \mathrm{m}, \alpha$), 3.79 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.28 $(1 \mathrm{H}, \mathrm{m}, \gamma), 6.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,1.8 \mathrm{~Hz}, \mathrm{~A} 6), 6.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, \mathrm{~A} 5), 6.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{~A} 2)$; $\delta_{\mathrm{c}} 11.4(\beta), 20.5$ (AOAc), 20.5 (γ-OAc), $22.3(\alpha), 53.8(\gamma), 56.1$ (OMe), 113.9 (A2), 121.3 (A6), 122.9 (A5), 136.6 (A1), 139.3 (A4), 151.7 (A3), 169.0 (A-OAc), 171.4 (γ-OAc).
trans-1-Acetoxy-2-(4-acetoxy-3-methoxyphenyl)cycl opropane (trans-23a): $\delta_{H} 1.22(1 \mathrm{H}, \mathrm{m}, \beta 1), 1.30(1 \mathrm{H}, \mathrm{m}, 2), 1.98$ ($3 \mathrm{H}, \mathrm{s}, \gamma-\mathrm{OAc}$), $2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{A}-\mathrm{OAc}), 2.20(1 \mathrm{H}, \mathrm{m}, \alpha), 3.80(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 4.14(1 \mathrm{H}, \mathrm{m}, \gamma), 6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,1.8 \mathrm{~Hz}, \mathrm{~A} 6)$, $6.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~A} 5), 6.92(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{~A} 2)$; δ_{c} 14.9 (β), 20.4 (A-OAc), 20.7 (γ-OAc), 23.6 (α), 56.1 (OMe), 56.5 $(\gamma), 111.8$ (A2), 119.1 (A6), 123.4 (A5), 139.3 (A4), 139.9 (A1), 152.2 (A3), 169.0 (A-OAC), 171.5 (γ-OAC).
cis-1-Acetoxy-2-(4-acetoxy-3,5-di methoxyphenyl)cycl opropane (cis-23b): $\delta_{\mathrm{H}} 1.28$ ($2 \mathrm{H}, \mathrm{m}, \beta^{\prime} \mathrm{s}$), 1.80 ($3 \mathrm{H}, \mathrm{s}, \gamma-\mathrm{OAc}$), 2.19 ($3 \mathrm{H}, \mathrm{s}, \mathrm{A}-\mathrm{OAc}$), 2.25 ($1 \mathrm{H}, \mathrm{m}, \alpha$), 3.77 ($6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$'s), 4.28 (1 H , $\mathrm{m}, \gamma), 6.56(2 \mathrm{H}, \mathrm{s}, \mathrm{A} 2 / 6)$; $\delta_{\mathrm{c}} 11.5(\beta), 20.2$ (A-OAc), 20.6 ($\gamma-$ OAc), 22.8 (α), 53.9 (γ), 56.4 (OM e's), 106.2 (A2/6), 128.3 (A4), 136.2 (A1), 152.7 (A3/5), 168.6 (A-OAC), 171.4 (γ-OAc).
trans-1-Acetoxy-2-(4-acetoxy-3,5-dimethoxyphenyl)cyclopropane (trans-23b): $\delta_{\mathrm{H}} 1.27$ ($2 \mathrm{H}, \mathrm{m}, \beta^{\prime} \mathrm{s}$), 2.00 ($3 \mathrm{H}, \mathrm{s}, \gamma-\mathrm{OAc}$), 2.19 ($3 \mathrm{H}, \mathrm{s}, \mathrm{A}-\mathrm{OAc}$), 2.20 ($1 \mathrm{H}, \mathrm{m}, \alpha$), 3.77 ($6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$'s), 4.17 (1 H , $\mathrm{m}, \gamma), 6.53(2 \mathrm{H}, \mathrm{s}, \mathrm{A} 2 / 6)$; $\delta_{\mathrm{C}} 15.0(\beta), 20.2$ (A-OAc), 20.7 ($\gamma-$ OAc), 24.1 (α), 56.4 (OMe's), $56.6(\gamma), 104.1$ (A2/6), 128.2 (A4), 139.5 (A1), 153.1 (A3/5), 168.6 (A-OAc), 171.5 (γ-OAc).

Synthesis of β-Aryl Ether Lignin Models (Figure 5). Etherified end-group lignin models 30 and 31 (Figure6) were synthesized according to published methods (Ralph and Young, 1981; Kulkarni and Sebastian, 1990; Helm and Ralph, 1992; Lu and Ralph, 1998d).
β-Coniferaldehyde ether of guaiacyl glycol [1-(4-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(prop-2-enal)phenoxy]ethanol (30a)]: $\delta_{\mathrm{H}} 3.89$ (3H, s, B-OMe), 3.93 (3H, s, A-OMe), 4.15 (2 H , $\mathrm{m}, \mathrm{A} \beta), 4.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.1 \mathrm{~Hz}, \mathrm{~A} \alpha-\mathrm{OH}), 5.05(1 \mathrm{H}, \mathrm{m}, \mathrm{A} \alpha)$, $6.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.8,7.8 \mathrm{~Hz}, \mathrm{~B} \beta), 6.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}$, A5), $6.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,1.8 \mathrm{~Hz}, \mathrm{~A} 6), 7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4$ $\mathrm{Hz}, \mathrm{B} 5), 7.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{~A} 2), 7.27(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4$, $2.1 \mathrm{~Hz}, \mathrm{~B} 6), 7.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.1 \mathrm{~Hz}, \mathrm{~B} 2), 7.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.8$ $\mathrm{Hz}, \mathrm{B} \alpha), 9.68$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{~B} \gamma$); $\delta_{\mathrm{c}} 56.2$ (A-OMe), 56.4 (B-OMe), 72.5 (A α), 75.6 (A β), 111.0 (A2), 111.9 (B2), 114.3 (B5), 115.4 (A5), 119.9 (A6), 124.3 (B6), 127.6 (B β), 128.5 (B1), 134.0 (A1), 146.9 (A4), 148.1 (A3), 150.9 (B3), 152.4 (B4), 153.6 ($\mathrm{B} \alpha$), 193.9 ($\mathrm{B} \gamma$).
β-Sinapaldehyde ether of guaiacyl glycol [1-(4-hydroxy-3methoxyphenyl)-2-[2,6-dimethoxy-4-(prop-2-enal)phenoxy]ethanol (30b)]: $\delta_{\mathrm{H}} 3.78$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{A} \beta 1$), 3.82 ($3 \mathrm{H}, \mathrm{s}, \mathrm{A}-\mathrm{OMe}$), 3.93 (6 H , s, B-OMe's), 4.28 ($1 \mathrm{H}, \mathrm{m}, \mathrm{A} \beta 2$), $4.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{~A} \alpha-$ $\mathrm{OH}), 4.84(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.7,2.6 \mathrm{~Hz}, \mathrm{~A} \alpha), 6.76(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.9$, $7.6 \mathrm{~Hz}, \mathrm{~B} \beta), 6.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{~A} 5), 6.84(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 8.1, $1.8 \mathrm{~Hz}, \mathrm{~A} 6), 7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{~A} 2), 7.11(2 \mathrm{H}, \mathrm{s}, \mathrm{B} 2 /$ 6), $7.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.9 \mathrm{~Hz}, \mathrm{~B} \alpha), 9.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{~B} \gamma)$; $\delta_{\mathrm{C}} 56.2$ (A-OM e), 56.7 (B-OM e's), 72.9 (A α), 80.5 (A β), 107.0 (B2/6), 110.8 (A2), 115.4 (A5), 119.9 (A6), 129.1 (B β), 131.1 (B 1), 132.9 (A1), 140.5 (B4), 146.9 (A4), 148.1 (A3), 153.4 (B α), 154.4 (B3/5), 193.9 ($\mathrm{B} \gamma$).
β-(Coniferyl alcohol) ether of guaiacyl glycol [1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropenyl)-2-methoxyphenoxy]ethanol (31a)]: $\delta_{+} 3.83$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{B}-\mathrm{OMe}$), 3.84 ($3 \mathrm{H}, \mathrm{s}, \mathrm{A}-\mathrm{OMe}$), $3.88(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{~B} \gamma-\mathrm{OH}), 4.04(2 \mathrm{H}, \mathrm{m}, \mathrm{A} \beta), 4.21(2 \mathrm{H}$, $\mathrm{dt}, \mathrm{J}=5.5,1.5 \mathrm{~Hz}, \mathrm{~B} \gamma), 4.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}, \mathrm{~A} \alpha-\mathrm{OH}), 4.98$ ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7.5,3.7 \mathrm{~Hz}, \mathrm{~A} \alpha$), $6.27(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15.9,5.5 \mathrm{~Hz}$, $\mathrm{B} \beta), 6.52(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15.9,1.5 \mathrm{~Hz}, \mathrm{~B} \alpha), 6.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0$ $\mathrm{Hz}, \mathrm{A} 5), 6.90(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1,1.2 \mathrm{~Hz}, \mathrm{~B} 6), 6.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.1 \mathrm{~Hz}, \mathrm{~B} 5), 6.92$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2,1.8 \mathrm{~Hz}, \mathrm{~A} 6$), 7.06 ($1 \mathrm{H}, \mathrm{d}$, J $=1.2 \mathrm{~Hz}, \mathrm{~B} 2), 7.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{~A}-2) ; \delta_{\mathrm{c}} 56.2$ ($\mathrm{A}-\mathrm{OMe}$), 56.3 (B-OMe), 63.25 (B γ), 72.53 ($\mathrm{A} \alpha), 75.55$ (A β), 110.9 (B2), 110.9 (A2), 115.3 (B5), 115.4 (A5), 119.8 (A6), 120.3 (B6), 129.0 (Bb), 130.1 (B α), 131.9 (B 1), 134.0 (A1), 146.8 (A4), 148.1 (A3), 149.1 (B4), 150.8 (B3).
β-(Sinapyl al cohol) ether of guaiacyl glycol [1-(4-hydroxy-3-methoxyphenyl)-2-[2,6-dimethoxy-4-(3-hydroxypropenyl)phenoxy]ethanol (31b)]: $\delta_{\mathrm{H}} 3.69$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{A} \beta 1$), 3.81 ($3 \mathrm{H}, \mathrm{s}, \mathrm{B}-\mathrm{OMe}$), 3.87 $(6 \mathrm{H}, \mathrm{s}, \mathrm{A}-\mathrm{OMe}), 3.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.7 \mathrm{~Hz}), 4.22(3 \mathrm{H}, \mathrm{m}, \mathrm{A} \beta 2$ and $\left.\mathrm{B} \gamma^{\prime} \mathrm{s}\right), 4.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.1 \mathrm{~Hz}, \mathrm{~A} \alpha-\mathrm{OH}), 4.81(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=$

Figure 1. Total-ion chromatograms of DFRC products from coniferyl and sinapyl alcohols $\mathbf{1 a}$ and $\mathbf{1 b}$, coniferal dehyde 15a, and sinapaldehyde 15b.
9.2, $2.5 \mathrm{~Hz}, \mathrm{~A} \alpha), 6.37$ ($1 \mathrm{H}, \mathrm{dt}$, J = 15.8, $5.2 \mathrm{~Hz}, \mathrm{~B} \beta$), 6.55 (1 H , $\mathrm{dt}, \mathrm{J}=15.8,1.3 \mathrm{~Hz}, \mathrm{~B} \alpha), 6.77(2 \mathrm{H}, \mathrm{s}, \mathrm{B} 2 / 6), 6.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.2 \mathrm{~Hz}, \mathrm{~A} 5), 6.83$ (1H, dd, J = 8.2, 2.1 Hz, A6), 7.02 (1H, d, J $=2.1 \mathrm{~Hz}, \mathrm{~A}-2$); $\delta_{\mathrm{c}} 56.2$ (A-OMe), 56.5 ($\mathrm{B}-\mathrm{OMe}$'s), 63.2 ($\mathrm{B} \gamma$), 72.9 (A α), 80.5 (A β), 104.5 (B2/6), 110.7 (A2), 115.4 (A5), 119.8 (A6), 130.0 (B α), 130.6 (B β), 132.9 (A1), 134.3 (B1), 137.3 (B4), 146.8 (A4), 148.1 (A3), 154.0 (B3/5).

RESULTS AND DISCUSSION

DFRC Products from Cinnamyl Alcohols and Cinnamaldehydes. Coniferyl alcohol 1a, sinapyl alcohol 1b, coniferaldehyde 15a, and sinapal dehyde 15b were subjected to the DF RC procedure. Although such units in lignins are completely etherified, reactions on these phenolic models helped to elucidate some DFRC pathways. GC/MS chromatograms of DFRC products from these model compounds are shown in Figure 1, structures in Figures 2 and 3. Peaks were identified by comparison of their GC retention times with those of authentic compounds and/or their mass spectral data (Lu and Ralph, 1998a). The major products shown in Figures 2 and 3 have also been isolated and their structures authenticated by NMR (see Experimental Procedures). The major DF RC products from coniferyl alcohol 1a were 4-acetoxyguaiacylcyclopropane (14a) and the guaiacylpropyl bromide 11a accompanied by minor components 8a-10a and 12a-13a. Compound 14a coeluted with a small amount of isoeugenol acetate

Figure 2. DF RC reactions of coniferyl alcohol $\mathbf{1 a}$ and sinapyl alcohol 1b.

Figure 3. DF RC reactions of conifer aldehyde 15a and sinapaldehyde 15b.
(9a), which could be detected in the NMR of a fraction from the monomer mixture of the DFRC product from coniferyl alcohol and could be separated using an extended GC temperature program (Lu and Ralph, 1998a). The major monomers from sinapyl alcohol 1b were the analogous compounds $\mathbf{8 b}, \mathbf{1 4 b}$, and $\mathbf{1 1 b}$. Compounds $\mathbf{1 4 b}$ and $\mathbf{9 b}$ were resolved in this case.
The major DF RC monomers from coniferal dehyde 15a and sinapaldehyde 15b were cis- and trans-arylcyclopropyl acetates 23 (Figures 1 and 3). The minor acetyl-

Table 1. Products and Their Distributions by Weight from AcBr Treatment of Compounds 1 and 15a

substrate	wt distribution of AcBr treatment intermediates (\%)	
coniferyl alcohol (1a)	$\begin{gathered} 88(4 \mathbf{a}), 9(6 \mathbf{a}), 3(3 \mathbf{a}), \\ \text { trace }(\mathbf{2 a}+5 \mathbf{a}) \end{gathered}$	
sinapyl alcohol (1b)	90 (4b), 5 (unknown), 5 (5b), trace (2b)	
coniferaldehyde (15a)	$\begin{aligned} & 84 \text { (18a), } 11(16 \mathbf{a}+17 a+19 a) \\ & 5(21 a) \end{aligned}$	
sinapaldehyde (15b)	$\begin{aligned} & 87 \text { (18b), } 9(16 b+\mathbf{1 7 b}+20 b) \\ & 4 \text { (21b) } \end{aligned}$	
${ }^{\text {a }}$ Identified products represented $>90 \%$ of the total product.		
$\text { 4. } \mathrm{R}_{1}=\mathrm{H}$$\text { a. } \mathrm{R}=\mathrm{H}$		$\begin{aligned} & \text { 14. } \mathrm{R}_{1}=\mathrm{H} \\ & \text { 23. } \mathrm{R}_{1}=\mathrm{OAc} \end{aligned}$
18. $\mathrm{R}_{1}=\mathrm{OAc}$		

Figure 4. Formation of arylcycl opropane compounds 14 and 23.
ated products from sinapaldehyde (compounds 12b, 24b, and 25b) were produced in higher yield than their counterparts (compounds 12a, 24a, and 25a) from coniferaldehyde. Compound 25a was barely detected in the GC chromatogram of DFRC products from coniferaldehyde.
To understand the formation of DFRC monomeric products from cinnamyl al cohols 1 and cinnamal dehydes 15, the intermediates produced during acetyl bromide (AcBr) treatment (Figures 2 and 3) were isolated by preparative TLC and identified by NMR (see Experimental Procedures). The relative proportions by weight among those intermediates are listed in Table 1. 4-Hydroxycinnamyl alcohols 1 (Figure 2) resulted primarily in aryl-1,3-dibromopropanes 4, presumably formed through HBr addition to the corresponding free-phenolic precursor of cinnamyl bromide 5, formed from their alcohols, followed by acetylation. Minor compounds isolated were $\mathbf{3 a}$ and $\mathbf{6 a}$. Compound $\mathbf{5 b}$ was isolated as a minor component ($\sim 5 \%$) in the major $\mathbf{4 b}$ fraction (total $=200 \mathrm{mg}$). Tiny amounts of AcBr treatment products from sinapyl alcohol remain unknown. No syringyl compounds $\mathbf{3 b}$ or $\mathbf{6 b}$ could be isolated or detected by NMR. Coniferaldehyde 15a and sinapaldehyde 15b reacted with AcBr in acetic acid in a similar way to the alcohols, resulting in compounds $\mathbf{1 8}$ as major products and 16, 17, and $\mathbf{2 1}$ as minor products (Figure 3). The only difference was that 19a was detected in the minor fraction of AcBr treatment products from coniferaldehyde 15a, but 20b was observed in the AcBr treatment products from sinapaldehyde 15b.
Once AcBr treatment intermediates were known, chemical pathways leading to the major DFRC products became easier to understand (Figures 2 and 3). Products 11 were formed by Zn reduction of the benzyl bromides of intermediates 4. Cyclopropanes 14 were also produced from 4 (Figure 4) following a known reaction pathway (Corbin et al., 1964). Products $\mathbf{8}$ and $\mathbf{9}$ may come from Zn reduction of intermediates 5 and/or 7/6, compound 10a from 6a, and compound $\mathbf{1 2}$ from 3 . Finally, 13a probably resulted from partial hydrolysis of the benzyl

26

27

29
a. $\mathrm{R}=\mathrm{H}$
b. $\mathrm{R}=\mathrm{OMe}$

31

30

Figure 5. Scheme for syntheses of 4-O-etherified cinnamyl alcohol/cinnamaldehyde end-group model compounds 30 and 31: (i) $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone; (ii) NaBH_{4}, EtOAc; (iii) 1,4-benzoquinone, diglyme, $120^{\circ} \mathrm{C}$; (iv) $\mathrm{NaOH}, \mathrm{EtOH}$; (v) $\mathrm{NaBH}_{4}, \mathrm{EtOH}$.
bromide on intermediate 4a followed by acetylation. The AcBr treatment intermediates from the aldehydes 15 suggest that the major products 23 were from intermediates 18 through Zn reduction (Figure 4). Products 8 and 9 may result from 21, 16, and/or 19/20. Minor products $\mathbf{2 4}$ could be from intermediates 17 or 18, but how product 25b has been formed remains unknown. Products $\mathbf{2}$ were from intermediates $\mathbf{1 6}$ by Zn reduction followed by acetylation.

DFRC Monomers from Cinnamyl Alcohol and Cinnamaldehyde End Groups of β-Aryl Ether Models 30 and 31. Four β-aryl ether lignin model compounds containing etherified cinnamyl end groups, which are better representatives of their structures in lignins, were synthesized according to standard methods as shown in Figure 5. Hydroxycinnamyl alcohols 1 were synthesized by reduction of hydroxycinnamaldehydes 15 with sodium triacetoxyborohydride (Lu and Ralph, 1998d) and condensed with bromo-4-acetoxy-3-methoxyacetophenone (26). The resultant ketone 27 was reduced with sodium borohydride in ethyl acetate to the corresponding benzyl al cohol 28. Benzoquinone oxidation (Kulkarni and Sebastian, 1990) oxidized the primary al cohol group in $\mathbf{2 8}$ to give the aldehyde 29. Other steps shown in Figure 5 have already been described (Ralph and Young, 1981; Helm and Ralph, 1992). A simple two-carbon side chain on the A moiety was used instead of the typical three-carbon one of lignin models because DFRC products from cinnamyl alcohol/cinnamaldehyde end groups can be readily found and the A side chain was not expected to significantly affect the reaction course. In this case, the only DFRC product from the A moieties of models 30 and 31 was the 4-acetoxy-3-methoxystyrene; the rest of the products came from the corresponding end groups (B moiety). Figure 6 shows total ion chromatograms of DFRC products from models 30 and 31 . By comparing Figure 6 with Figure 1, it was found that products from 4-Oetherified cinnamyl end groups were similar to those from the corresponding cinnamyl al cohols/cinnamaldehydes with free-phenolic groups. However, the propor-

Figure 6. Total-ion chromatograms of DFRC products from models 30 (containing 4-O-etherified cinnamal dehydes) and 31 (containing 4-O-etherified cinnamyl alcohols): (\# 4-acetoxy-3-methoxystyrene from the A moiety.
tions of the products were different, especially for cinnamyl al cohol end groups. Model 31a produced more

8a, 13a, and 9a compared to coniferyl alcohol 1a. Similarly, model 31b gave rise to more 8b and 9b compared to sinapyl al cohol 1b. M odel $\mathbf{3 0}$ had patterns of products similar to those from the corresponding aldehydes 15, although small variations were found in the case of 30b, from which a significant amount of one unknown compound \mathbf{X} and 13b were produced by the DFRC method.

Formation and Identification of the Arylcyclopropane Compounds 14 and 23. The major DFRC monomers from cinnamaldehyde end groups were diagnostic arylcyclopropyl acetates 23 (Figure 3), whereas significant amounts of arylcyd opropanes 14 (Figure 2) were produced from cinnamyl alcohol end groups (Figure 1). Each diastereoisomer of compounds 23 was isolated by reverse-phase TLC following normal-phase TLC from preparative-scale DF RC of cinnamaldehydes 15. I dentification of $\mathbf{2 3}$ isomers was made by the usual series of NMR experiments (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, DEPT, and 2D gradient-enhanced HMQC and HMBC). Two low-field multiplet signals around $\delta_{\mathrm{H}} 1.2-1.3$ in the ${ }^{1} \mathrm{H}$ NMR spectra, and the corresponding $\delta_{C} 11.4-11.5$ methylene signals in the ${ }^{13} \mathrm{C}$ NMR spectra, indi cated the presence of cyclopropane protons in compounds 23. Singlets integrating for three protons at δ_{H} 1.8-2.0 indicated a side-chain (aliphatic) acetate attached to tertiary carbons. In HMBC experiments, C-1 on the aromatic ring correlated with all of the protons on the side chain, an occurrence not encountered in typical aryl-n-propyl side chains. All of the NMR and mass spectral data of compounds 23 were consistent with arylcyclopropyl acetates. Isomers were assigned on the basis of the higher ${ }^{13} \mathrm{C}$ shift of C_{α} and C_{γ} (Breitmaier and Voelter, 1987) accompanied by a lower proton shift of H_{γ} due to shielding by the aromatic ring in the trans-isomer.

Compounds 14 were isolated (in the same way as was used for isolating compounds 23) from preparative DFRC of cinnamyl alcohols 1. In the proton NMR spectra of 14, two multiplet peaks at $\delta_{\mathrm{H}} 0.7$ and 0.9 , integrating for two protons each, indicated the presence of two pairs of cyclopropane protons. Those protons correlated with only one carbon peak in HMQC experiments, suggesting a symmetry. Again, C-1 of the aromatic ring correlated with all side-chain protons in HMBC experiments. Thus, compounds 14 were identified as arylcyclopropanes.

Phenylcycl opropane has been obtained by treatment of 1-phenyl-1,3-bromopropane with a $\mathrm{Zn}-\mathrm{Cu}$ couple in dimethylformamide (Corbin et al., 1964). Similar ring closure was also observed when comparable reducing conditions were applied to 1,3-dihilades (Rifi, 1967). Hence, compounds 14 and 23 likely resulted from the 1,3-dibromides 4 and $\mathbf{1 8}$ formed in the AcBr treatment step. To confirm this pathway, 4 and 18 were isolated from AcBr treatment of hydroxycinnamyl al cohols 1 and hydroxycinnamaldehydes $\mathbf{1 5}$. When 4a was treated with Zn dust in dioxane/acetic acid/water mixed solvent, as in the reductive step of the DFRC procedure, compounds 11a and 14a were produced, accompanied by small amounts of hydrolysis product, 3-bromo-1-(4-acetoxy-3methoxy)phenylpropanol, from which 13a was formed by acetylation. Compounds 23 were produced analogously when compounds 18 were treated with Zn under DFRC conditions (Figure 4).

CONCLUSIONS

Diagnostic products were formed from cinnamyl alcohol and cinnamaldehyde end groups in lignins
following DFRC treatment. The reactions are not as clean as the ether-cleaving reactions that form the basis of the DF RC method but, nevertheless, provide valuable markers for studying end groups in lignins. CinnamaIdehyde end groups produce characteristic arylcyclopropyl acetates, so the DFRC method could find value in the understanding of compositional changes in mutant and transgenic plants where aldehyde buildup is suspected. Cinnamyl al cohol groups produce a mixture of arylpropenes and 1-aryl-3-bromopropanes, along with more diagnostic arylcyclopropanes. Coniferyl alcohol end groups also form 1-acetoxy-1-aryl-3-bromopropanes. Although the product mixtures are more complex, the production of relatively diagnostic "fingerprint" products from cinnamyl alcohol end groups also allows the DFRC method to provide useful data on these features of lignins.

LITERATURE CITED

Adler, E. Lignin chemistry-past, present and future. Wood Sci. Technol. 1977, 11, 169-218.
Breitmaier, E.; Voelter, W. Carbon-13 NMR Spectroscopy. High-Resolution Methods and Applications in Organic Chemistry and Biochemistry, 3rd ed.; VCH Publishers: New York, 1987.
Chen, C. Lignins: Occurrence in woody tissues, isolation, reactions, and structure. In Wood Structure and Composition; Lewin, M., Goldstein, I. S., Eds.; Dekker: New York, 1991; pp 183-261.
Corbin, T. F.; Hahn, R. C.; Shechter, H. Cycl opropylbenzene. Org. Synth. 1964, 44, 30-33.
Ede, R. M.; Ralph, J .; Torr, K. M.; Dawson, B. S. W. A 2D NMR investigation of the heterogeneity of distribution of diarylpropane structures in extracted Pinus radiata lignins. Holzforschung 1996, 50, 161-164.
Freudenberg, K.; Neish, A. C. Constitution and Biosynthesis of Lignin; Springer-Verlag: Berlin, 1968.
Fukushima, K.; Terashima, N. Heterogeneity in formation of lignin. Part XV: Formation and structure of lignin in compression wood of Pinus thunbergii studied by microautoradiography. Wood Sci. Technol. 1991, 25, 371-381.
Grushnikov, O. P.; Shorygina, N. N. Modern state of the problem of lignocarbohydrate bonds in plant tissues. Usp. Khim. 1970, 39, 1459-1478; Chem. Abstr. 73, 127680j.
Harkin, J. M. Lignin-a natural polymeric product of phenol oxidation. In Oxidative Coupling of Phenols; Taylor, W. I., Battersby, A. R., Eds.; Dekker: New York, 1967; pp 243321.

He, L.; Terashima, N. Formation and structure of Iignin in monocotyledons. III. Heterogeneity of sugarcane (Saccharum officinarum L.) lignin with respect to the composition of structural units in different morphological regions. J. Wood Chem. Technol. 1990, 10, 435-459.
He, L.; Terashima, N. Formation and structure of Iignin in monocotyledons. IV. Deposition process and structural diversity of the lignin in the cell wall of sugarcane and rice plant studied by ultraviolet microscopic spectroscopy. Holzforschung 1991, 45, 191-8.
Helm, R. F.; Ralph, J. Lignin-hydroxycinnamyl model compounds related to forage cell wall structure. 1. Ether-linked structures. J. Agric. Food Chem. 1992, 40, 2167-2175.
Kim, Y. S.; Meshitsuka, G.; Ishizu, A. Structural heterogeneity of Iignin, contribution of carbon-carbon bonds. Mokuzai Gakkaishi 1994, 40, 407-413.
Kulkarni, M. G.; Sebastian, M. T. 1,4-Benzoquinone: A new selective reagent for oxidation of alcohols. Tetrahedron Lett. 1990, 31, 4497-4500.
Lapierre, C.; Monties, B. Evidence of Iignin heterogeneity by progressive extraction of poplars wood. Proceedings, EkmanDays 1981, International Symposium on Wood Pulping Chemistry; SPCI: Stockholm, 1981; Vol. 5, pp 35-39.

Lapierre, C.; Lallemand, J. Y.; M onties, B. Evidence of poplar lignin heterogeneity by combination of carbon-13 and proton NMR spectroscopy. Holzforschung 1982, 36, 275-282.
Lapierre, C.; Rolando, C.; Monties, B. Characterization of poplar lignins acidolysis products: capillary gas-liquid and liquid-liquid chromatography of monomeric compounds. Hol zforschung 1983, 37, 189-198.
Lapierre, K.; Pollet, B.; M onties, B. Heterogeneous distribution of diarylpropane structures in spruce lignins. Phytochemistry 1991, 30, 659-662.
Lu, F.; Ralph, J. Derivatization followed by reductive cleavage (DFRC method), a new method for lignin analysis: protocol for analysis of DFRC monomers. J. Agric. Food Chem. 1997a, 45, 2590-2592.
Lu, F.; Ralph, J. The DFRC method for Iignin analysis. 1. A new method for b-aryl ether cleavage: Iignin model studies. J. Agric. Food Chem. 1997b, 45, 4655-4660.

Lu, F.; Ralph, J. The DFRC method for lignin analysis. 2. Monomers from isolated lignins. J. Agric. Food Chem. 1998a, 46, 547-552.
Lu, F.; Ralph, J. The DFRC method for Iignin analysis. Part 3. NMR studies. J. Wood Chem. Technol. 1998b, 18, 219233.

Lu, F.; Ralph, J. Efficient ether cleavage in lignins: the "DFRC" method as a basis for new analytical methods. In Lignin and Lignan Biosynthesis; Lewis, N. G., Sarkanen, S., Eds.; American Chemical Society: Washington, DC, 1998c; pp 294-322.
Lu, F.; Ralph, J. Highly selective syntheses of coniferyl and sinapyl alcohols. J. Agric. Food Chem. 1998d, 46, 17941796.

Monties, B. Recent advances on Iignin inhomogeneity. In The Biochemistry of Plant Phenolics; Van Sumere, C. F., Lea, P. J., Eds.; Clarendon Press: Oxford, U.K., 1985; pp 161181.

Monties, B. Recent advances in structural and biosynthetic variability of lignins. Proceedings, Sixth International Symposium of Wood and Pulping Chemistry, Melbourne, Australia; APPITA: Australia, 1991; Vol. 1, pp 113-123.
Monties, B .; Lapierre, C . Donnés récentes sur l'hétérogénéite de la lignine. Physiol. Veg. 1981, 19, 327-348.
Peng, J.; Lu, F.; Ralph, J. The DFRC method for lignin analysis. 4. Lignin dimers isolated from DFRC-degraded Ioblolly pine wood. J. Agric. Food Chem. 1998, 46, 553560.

Peng, J.; Lu, F.; Ralph, J. The DFRC method for lignin analysis. Part 5. Isochroman lignin trimers from DFRCdegraded Pinus taeda. Phytochemistry 1999, 50, 659-666.
Ralph, J.; Lu, F. The DFRC method for lignin analysis. 6. A modified method to determine acetate regiochemistry on native and isol ated lignins. J. Agric. Food Chem. 1998, 46, 4616-4619.

Ralph, J.; Young, R. A. Synthesis of the lignin model compounds threo-guaiacylglycerol- β-guaiacyl ether and threo-veratrylglycerol- β-guaiacyl ether. H olzforschung 1981, 35, 39-41.
Ralph, J.; Hatfield, R. D.; Piquemal, J.; Yahiaoui, N.; Pean, M.; Lapierre, C.; Boudet, A.-M. NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamyl-al cohol dehydrogenase and cinnamoyl-CoA reductase. Proc. NatI. Acad. Sci. U.S.A. 1998, 95, 12803-12808.
Rifi, M. R. Electrochemical preparation of bicyclobutanes and other strained cycloalkanes. J. Am. Chem. Soc. 1967, 89, 4442-4445.
Sarkanen, K. V. Precursors and their polymerization. In Lignins, Occurrence, Formation, Structure and Reactions; Sarkanen, K. V., Ludwig, C. H., Eds.; Wiley-Interscience: New York, 1971; pp 95-163.
Terashima, N.; Fukushima, K. Heterogeneity in formation of lignin. XI. An autoradiographic study of the heterogeneous formation and structure of pine lignin. Wood Sci. Technol. 1988, 22, 259-270.
Terashima, N.; Seguchi, Y. Heterogeneity in formation of lignin. IX. Factors influencing the formation of condensed structures in lignins. Cellul. Chem. Technol. 1988, 22, 147154.

Terashima, N.; Tomimura, Y.; Araki, H. Heterogeneity in formation of lignin. III. Formation of condensed type structure with bond at position 5 of guaiacyl nucleus. Mokuzai Gakkaishi 1979, 25, 595-599.
Terashima, N.; Fukushima, K.; Takabe, K. Heterogeneity in formation of lignin. VIII. An autoradiographic study on the formation of guaiacyl and syringyl lignin in Magnolia kobus DC. Holzforschung 1986a, 40, 101-105.

Terashima, N.; Fukushima, K.; Tsuchiya, S.; Takabe, K. Heterogeneity in formation of lignin. VII. An autoradiographic study on the formation of guaiacyl and syringyl lignin in poplar. J. Wood Chem. Technol. 1986b, 6, 495504.

Tollier, M. T.; Monties, B.; Lapierre, C.; Herve du Penhoat, C.; Rolando, C. Inhomogeneity of angiosperm lignin: comparison of the monomeric composition of lignin fractions isolated from different wood species. Holzforschung 1986, 40, 75-79.

Received for review October 16, 1998. Revised manuscript received February 16, 1999. Accepted February 24, 1999. We gratefully acknowledge partial support through USDA-NRI Competitive Grant 97-02208 (Improved Utilization of Wood and Wood Fiber Section).

J F 981138 S

[^0]: * Address correspondence to this author at the U.S. Dairy Forage Research Center, USDA-ARS, 1925 Linden Dr. W., Madison, WI 53706-1108 [telephone (608) 264-5407; fax (608) 264-5147; e-mail jralph@facstaff.wisc.edu].

